3.544 \(\int \frac{\cos ^5(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=55 \[ \frac{\sin ^6(c+d x)}{6 a^2 d}-\frac{2 \sin ^5(c+d x)}{5 a^2 d}+\frac{\sin ^4(c+d x)}{4 a^2 d} \]

[Out]

Sin[c + d*x]^4/(4*a^2*d) - (2*Sin[c + d*x]^5)/(5*a^2*d) + Sin[c + d*x]^6/(6*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.106426, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.103, Rules used = {2836, 12, 43} \[ \frac{\sin ^6(c+d x)}{6 a^2 d}-\frac{2 \sin ^5(c+d x)}{5 a^2 d}+\frac{\sin ^4(c+d x)}{4 a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^5*Sin[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

Sin[c + d*x]^4/(4*a^2*d) - (2*Sin[c + d*x]^5)/(5*a^2*d) + Sin[c + d*x]^6/(6*a^2*d)

Rule 2836

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d*x)/b
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^5(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{(a-x)^2 x^3}{a^3} \, dx,x,a \sin (c+d x)\right )}{a^5 d}\\ &=\frac{\operatorname{Subst}\left (\int (a-x)^2 x^3 \, dx,x,a \sin (c+d x)\right )}{a^8 d}\\ &=\frac{\operatorname{Subst}\left (\int \left (a^2 x^3-2 a x^4+x^5\right ) \, dx,x,a \sin (c+d x)\right )}{a^8 d}\\ &=\frac{\sin ^4(c+d x)}{4 a^2 d}-\frac{2 \sin ^5(c+d x)}{5 a^2 d}+\frac{\sin ^6(c+d x)}{6 a^2 d}\\ \end{align*}

Mathematica [A]  time = 0.528169, size = 38, normalized size = 0.69 \[ \frac{\sin ^4(c+d x) \left (10 \sin ^2(c+d x)-24 \sin (c+d x)+15\right )}{60 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^5*Sin[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

(Sin[c + d*x]^4*(15 - 24*Sin[c + d*x] + 10*Sin[c + d*x]^2))/(60*a^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.083, size = 39, normalized size = 0.7 \begin{align*}{\frac{1}{d{a}^{2}} \left ({\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{6}}{6}}-{\frac{2\, \left ( \sin \left ( dx+c \right ) \right ) ^{5}}{5}}+{\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{4}}{4}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^5*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x)

[Out]

1/d/a^2*(1/6*sin(d*x+c)^6-2/5*sin(d*x+c)^5+1/4*sin(d*x+c)^4)

________________________________________________________________________________________

Maxima [A]  time = 1.20915, size = 53, normalized size = 0.96 \begin{align*} \frac{10 \, \sin \left (d x + c\right )^{6} - 24 \, \sin \left (d x + c\right )^{5} + 15 \, \sin \left (d x + c\right )^{4}}{60 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/60*(10*sin(d*x + c)^6 - 24*sin(d*x + c)^5 + 15*sin(d*x + c)^4)/(a^2*d)

________________________________________________________________________________________

Fricas [A]  time = 1.06009, size = 180, normalized size = 3.27 \begin{align*} -\frac{10 \, \cos \left (d x + c\right )^{6} - 45 \, \cos \left (d x + c\right )^{4} + 60 \, \cos \left (d x + c\right )^{2} + 24 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right )}{60 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/60*(10*cos(d*x + c)^6 - 45*cos(d*x + c)^4 + 60*cos(d*x + c)^2 + 24*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*
sin(d*x + c))/(a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**5*sin(d*x+c)**3/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.29208, size = 53, normalized size = 0.96 \begin{align*} \frac{10 \, \sin \left (d x + c\right )^{6} - 24 \, \sin \left (d x + c\right )^{5} + 15 \, \sin \left (d x + c\right )^{4}}{60 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/60*(10*sin(d*x + c)^6 - 24*sin(d*x + c)^5 + 15*sin(d*x + c)^4)/(a^2*d)